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A problem on the harmonic oscillations of a transversely inhomogeneous plate, the physicomechanical properties of which are
described by arbitrary piecewise-continuous functions, is considered using the three-dimensional equations of the theory of
elasticity. A general representation of the solution is found and, on the basis of this solution by a separation of variables, the
initial problem, in the case of homogeneous boundary conditions on the faces of the plate, is reduced to two eigenvalue problems
with a pair of eigenvalue parameters. The angular frequency and wave number perform the role of these parameters. Particular
attention is paid to the critical frequencies for which multiple eigenvalues exist in the wave-number spectrum. A classification
of them is given and differential equations are obtained which describe the distribution of the critical modes in the domain occupied
by the plate. The general theory constructed, together with the Floquet-Lyapunov theory, is applied to plates with a periodic
transverse inhomogeneity. Calculations are carried out for a finely stratified plate with alternating rigid (steel) and soft (rubber)
layers. © 2002 Elsevier Science Ltd. All rights reserved.

The investigation of the propagation of harmonic waves in semi-bounded bodies and the oscillation of
plates reduces to eigenvalue problems in the pair of parameters (k, w), where & is the wave number
and o is the angular frequency. In the majority of papers concerned with this problem, as a rule the
question of the mathematical description of the set of modes corresponding to a multiple wave number
was left aside. Various terms are used for the value of the frequency in such cases: the critical frequency,
the stop frequency, the cut-off frequency and the resonance frequency. Using the example of an
anisotropic, transversely inhomogeneous strip, it was shown in [1, 2] that critical modes can have a power-
low growth, and this result was extended in [3-6] to arbitrary solid waveguides with a single axis of
propagation of normal modes. A full classification of the critical frequencies of a homogeneous plate
has been given in [7, 8] in relation to the investigation of the interaction of the dispersion and dissipative
decay of normal modes and two-dimensional equations have been obtained for describing the distribution
of the critical modes. A similar result has been announced for the case of a transversely inhomogeneous
plate made of elastic [9] and piezo-active materials [10]. The results of an investigation of the problem
for a finely stratified plate having a periodic structure are described below.

1. GENERAL REPRESENTATION OF THE SOLUTION

We will denote the domain occupied by the plate by V' = § x [z7, z*], where x;, x, € S,x3 =z € o
[z7, z*]. We consider the equations for the steady oscillations of a one-dimensionally inhomogeneous,
transversally isotropic medium in the domain V. We have

O(C 440Uy + C440,1t3) + €300,y + (1107 + Cog Ny +(Cp + Ce5)9,0515 + P71y =0

(€ 44Dy + C4401t3) + C1300,1t3 +(Cpy + Ceg )00l +(Cegd? +€1103 )y +Pp@2uy =0

0(C330U3 + €304y + €130l ) + C4400, 1y + 4400,y + Coq Aty +p@ity = 0 (1.1)
0y =0/0xy, 0=0/3z, A=07+05 (@=12), 2ce=c;—0py

Here u; are the amplitudes of the displacements (j = 1, 2, 3), ¢;; = ¢;(z) and p = p(z) are the moduli
of elasticity and the density, respectively, regarding which it is assumed that they are piecewise-continuous
functions of z, and w is the angular frequency of the harmonic oscillations. In the case of an isotropic
material
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n=C=A+2,  Cy=Ce =W Cp=c3=A

where A and p are the Lamé elastic parameters.
We will represent the plane field u’ = {uy, u,} in the form of potential and vortex parts, putting

Uy = Oy +0qy, Uy =0y — oy (1.2)
Substituting Eqs (1.2) into system (1.1) and transforming the first two equations, we obtain
o, Li(vy,u3) +9,L(,) =0, 9L, (v, u3)-9,L(v;) =0
Ly, u3) = 0(C40U) + Caqtin) + €130U3 + €1, A, + P00, (1.3)
L(y) = 3(c4400; ) + CesAU, +p0w,
and the third equation of (1.1) gives
Ly vy, u3) = 3(C33Au3 + € 138U, ) + €4 (AU, + Ay ) + p@diu; = 0

Since relations (1.3) are identical to the Cauchy-Riemann identities for adjoint harmonic functions,
the initial system of equations (1.1) is equivalent to the following

Lw,y)=8. L,.u)=g, Ly,,u)=0 (1.4)

where g; and g, are adjoint harmonic functions of the variables x; and x, which, generally speaking, also
depend on z. The following can be taken as a particular solution of the inhomogeneous system of
equations (1.4)

v, =ug, v,=u,°, u3=0 (1.5)
where v? and v are solutions of the equations
ANcaydv ) +povd=g,
in the case of arbitrary boundary conditions on the faces z = z*. Using this arbitrariness, it is always

possible, for any value of », to make problems of constructing v$ invertible and to represent their
solutions in the form

2t
U3= J:K(Z—)’)ga(xpxz»)’)dy (16)

4
The equality
w=dul+opd=0, u)=0wl-0pl=0 n
follows from expressions (1.2), (1.3) and (1.6), and, consequently, the displacement fields corresponding

to the particular solution are identically equal to zero. One can therefore put g; = g, = 0. Hence, the
initial system of equations (1.1) is separated into an equation in the function v,

Lw,)=0 (1.8)
and a system of equations in the pair of functions vy, us
L,w,.u;,)=0, a=12 1.9
We shall assume that, when z = z*, the following boundary conditions are specified
Ous |t = (Cagduy +Casit3) | _ 2 = da(x1,%)
O3 | _ 2 = (c330U3 + €130,y + €130,u) l,.,2= g (x,x,) (1.10)

Here, o;; are the components of the stress tensor.
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We shall show that the boundary conditions presented above can also be separated in the case of an
inhomogeneous layer to obtain disconnected boundary-value problems in the function v, and the
functions v; and u,.

In fact, we will represent the functions ¢, and g, in the form

qli =a]‘tf+az‘t§, q% =a21';t—a]‘t§ (111)
Substituting expressions (1.2) and (1.11) into conditions (1.10), we obtain after some reduction
- gt rt
Mu,) |z=zt = C44aU2 |z=zt =1+
M\, u3) Iz=z* = [c4y (Ov) +u3)) 'z=z:t =1 +f* (1.12)

My©,,u3)l,_ 2= (c330u3 +1380)) | _ 2 =¢"

Here f§ (x1, x;) and f5 (x;, x,) are adjoint harmonic functions.
It can be shown that, for all values of ® for which the problem

ANcaudd()]+p0’®(2)=0,  I(th)=0 (1.13)

has only a trivial solution, it is possible to put fg (x1, x;) = 0. Values of ® for which problem (1.13) has
a non-trivial solution belong to the category of critical values, and the corresponding solutions will be
constructed below.

2. HOMOGENEOUS SOLUTIONS

We equate the right-hand sides in boundary conditions (1.12) to zero and we shall seek solutions of
the corresponding homogeneous boundary-value problems in the form

vy = a()my(x),x;), vy =a(@Dm(x;,x), w3 =ikay(2)my(x,x;) 2.1
Amy +k*my, =0

Substituting expressions (2.1) into equations (1.8) and (1.9) and the boundary conditions (1.12) and
separating the variables, we obtain the eigenvalue problems

(cogd’) +(p0? —k%cyy)a=0, a’(zH)=0 (2.2)
(Ca’)’ +ik[(Ba) +Ba’]-k’Aa+pw’a=0 (Ca’+ikBa)| _.=0 (2:3)

Here a = {ay, a,} is a vector function, a prime denotes differentiation with respect toz and C = ||C; ]|,
B = ||By|| and A = ||4;;|| are matrix functions (B* is the transpose of the matrix B) with the following
non-zero elements:

Cp=cy. By=cu By=c3 Aj=cy, Ap=cy

We will denote the eigenvalues of problems (2.2) and (2.3) with respect to the parameter k by A,
and A,.

Assertion 1. For any real value of the frequency o, the spectrum A = Ag, U Ag, (B = 1, 2), where the
subset Ag, contains a finite number 2R of eigenvalues which are symmetrically arranged on the real
axis, Ay is an unbounded, symmetric set consisting of the real eigenvalues and A, is a symmetric,
unbounded set of complex eigenvalues (we also assign pure imaginary eigenvalues to the category of
complex eigenvalues).

If k, € Ay and k, € A, are simple eigenvalues, then homogeneous elementary solutions of the first
kind (the subscript v) and the second kind (the subscript p) that correspond to them are given by the
expressions
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Uy, =0y, (2)0yMy,, Uy, =-ay,(2)0my,,  u, =0 (2.4)

Amﬁl +Ig,zm2u =O, My, = My, (xl,X2)
W, =4, ()0 my,,  dyp = (200, Uy =ik,ay,(2)my, (2.5)

2, =
Am,P+kpm,P-0. my, = my, (X, ;)

Theorem. If the spectra A, and A, consist solely of simple eigenvalues, then any homogeneous solution
(a solution which satisfies homogeneous boundary conditions (1.10)) can be represented by a finite or
infinite sum of the elementary solutions (2.4) and (2.5). Here, if § is an unbounded domain, the solutions
of the Helmholtz equations for real values of k, and k,, can be chosen from the condition of the energy
radiation principle [2, 7, 8] and, in the case of complex values, from the attenuation condition.

Remark 1. The proof of an analogous theorem on the completeness of systems of homogeneous elementary
solutions, presented earlier in [11] for a static problem, can be transferred to the case under consideration with
only slight changes.

3. CRITICAL FREQUENCIES AND MODES

We shall say that a frequency o, is critical if, among the eigenvalues &, € A;(w), there is a multiple
eigenvalue k.. We shall call the pair (k., w.) critical and we shall call the elementary solutions
corresponding to the critical pair the critical modes.

Consider the case when k. = 0. Substitution of k¥ = 0 into problem (2.2) leads to the following problem
for determining the set of critical frequencies

(cosal) +pwlay =0, ay(z*)=0 B0
Substitution of k = 0 into (2.3) leads to two problems for determining the set of critical frequencies

(castty) +p0ag =0,  ap(z)=0 (3.2)

(c33800) +pW’ag, =0,  ag(z*)=0 (3.3)

We will first consider problems (3.1) and (3.2) which, although they are identical, are a consequence
of the two different problems (2.2) and (2.3). We call the sets of values w = o, (r = 1, 2, ...), for which
these problems have non-trivial solutions, critical frequencies of the first kind. The corresponding
eigenfunctions a and ag; are denoted by @,. In this case, an eigenvector of problem (2.3) has the form
3g, = {9q,, 0}. Since k = 0 is a multiple eigenvalue, the root subspaces of the initial problem (2.3) are
not exhausted by the eigenvector. As the investigations in [6, 7], carried out for a homogeneous plate,
have shown, different versions of problem (2.3} are possible depending on the parameters. We will now
describe them.

For this purpose, we consider problem (2.3) and construct the equations for determining the associated
vectors. We have

2(0,w,)a,, =F,,, m=12,.. 3.4)

m

F, =-9,2(0,0,)a,,. F,, =-0,2(0,0,)a,_,, - %0:Z2(0,0,)a, _,,

Z(k,w)a = {(Ca)+ik|(Ba) +B'a’)—k*Aa+pw’a =0, (Ca+ikBa)| _,)

Here 9, is a derivative with respect to the eigenvalue parameter k.
Since each of problems (3.4) is an “eigenvalue problem”, solutions only exist when the conditions

z"
dmr = ijUao,ydz = 0
o

are satisfied.
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Whenm = 1, it follows from Eq. (3.4) that a;, = {@y,, ia,,}, where ay,, are determined by the solutions
of the problem

(caatyy2) + P“’f“nz + (1390, ) + €449, =0, (casai,2 +€1390,) |z=z* =0 (3.5)

At the same time

+

Z
4, = ,[_ (13812 )5,, — (C4a312)®5, + €1190,P0, Mz (3.6)

4

If d;, # 0, then the Jordan array is exhausted by the two vectors ag, and a;, while, if d;, = 0, at least
a further pair of associated vectors a,, and as, exists.

We now consider the problem of constructing the elementary vectors (modes) corresponding to the
critical pairs (0, o,). In this case, the value k. = 0 is a quadruple value with respect to the set of elementary
solutions of the first and second kind if dy, # 0 and has a higher multiplicity (always even) if d;, = 0.
In order to obtain the system of differential equations describing the distribution of the amplitudes of
the critical modes with respect to the variables xy, x,, the technique employed earlier in [12, 13] can be
used.

Assertion 2. Suppose dy, # 0. Then, the set of elementary solutions corresponding to the critical pair
(0, w,) is determined by the relations

Uy = Po,by (X1, X7)+ A2,1048, uy = ay,,8, 8=0,b, +0,b, (3.7

(}"r + p'r)ale + p’rAbl = 0’ (A'r + “‘r)aZe + “'rAb2 =0 (38)

Z
Hr= '[_666(p0r60rdz’ }\'r = dlr - 2“’r

4

Here, a = a,,; is the solution of the problem

'y A2
(ca@’) +pOra+(Caqy 7 +€13a],5 +(c12 = Coshy /1, )P, =0

’
(€4aa@" + C44a,7) Iz:z* =0

Remark 2. Equations (3.8) are identical in form to the equations of the plane theory of elasticity.

Assertion 3. 1f dy, = 0 (the first special case), then at least a further two associated vectors a,, =
{-a3,1, 0}, a,3 = {0, —ias,,} exist, where a3, is the solution of the problem

’ ’ 2 ’ ’
(€4aa342) +PW, a3, +(C1302,) + Cag@2p) + €40,y =0
(cas@3pp + C1305,1) l,.,+=0 39
The critical modes in this case are determined by the relations
Uy = (pOrba + a2rlaa9’ Uy = alr29+ a3r2C
Here C is an arbitrary constant, and the functions b, and b, satisfy the equations

A(@b +3,9,6,)=0,  A(3,0,b, +32b,)=0 (3.10)

x

Remark 3. Relations (3.7) and (3.8) admit of particular solutions of the form
Uy =90 Ca, U3=0

where C, are constants. These solutions describe one of the types of resonances of a layer which it is natural to
call a longitudinal resonance.
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We will now present some fundamental results for the case when problem (3.5) has a non-trivial
solution. We shall call the corresponding values of ® = w, (g = 0, 1, ...) critical frequencies of the second
kind. An eigenvector ap, = {0, ag,,} and an associated vector a,, = {ia,,, 0} correspond to each critical
frequency of the seconﬁ kind if

dyy# 0 (3.11)

Z
- , ’ 2
dy = | [alql (€130042) — @191 (Ca4G042) ~ 044‘10q2]dZ
M

where ay; is the solution of the problem
’ ’ 2
(c44a,q| Y+ p(.oqa‘ql + Cuaoq + C|3a6q2 =0
(CMaI’ql + C44a0q2) li:t:z: 0
Assertion 4. If condition (3.11) is satisfied, the set of critical modes corresponding to the critical pair
(0, m,) is described by the relations

Uy = a,qlaam, Uz = aoqzm, Am=0 (3.12)

Remark 4. Relations (3.12) admit of a solution of the form
Ug = 0, Uy = angC

where C is an arbitrary constant. This solution is naturally interpreted as the transverse resonances of an unbounded
layer. ’

Assertion 5. If dy, = 0 (the second special case), then at least a further two associated vectors a,, =
{0, —az43}, a3, = {-as,, 0} exist, the components of which are determined by the solutions of the
problems

(c330242) + szazqz +(€13a141)" + Casig) + CaaGpgy =0
(€33a342 + C13a191) |Z=Z: =0
(Caa3g) + ngasql +(Caay2) + C13a242 + €113 =0
(Caat3g) + Cag2g2) l,.,t=0

and the critical modes are determined by the relations

— 2., =
Uy = alqlaam"’ a3q,auAm, Uy = aoq'zm + azqu”l, Am=0

Assertion 6. If there are critical frequencies of the first and second kind which are identical in magnitude
. = @, = @, in the spectra A; and A, (the third special case), then a longitudinal and a transverse
critical mode of the form

Uy =a0,1bu, Us =0, a]bl +32b2 =O, azbl —ale =0

Uy = 0, us= a0q2
correspond to the pair of eigenvalues (0, ®,).

Remark 5. The fact that the Jordan arrays d,,, d;, become infinite is one of the signs of the existence of such a
pair of solutions.

The cases of critical frequencies and modes which have been described do not exhaust all the
possibilities. In particular, it can be shown that, if d;, < 0 (d,, < 0), the dispersion curve ® = o(k),
emerging from the point (0, ®,) ((0, w,)) always has a local minimum with a value k. # 0 which is multiple.
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4. THE SPECTRA OF THE CRITICAL FREQUENCIES
OF TRANSVERSELY INHOMOGENEOUS PLATES WITH
A PERIODIC STRUCTURE

We put
z7=0, 2" =H=Nh+g, O0<e<h, z,=hs, 5=0, 1,...N
where N is a natural number and consider the problem
(ca’)+ (po? —ck®)a=0 4.1
a'(0)=a'(H)=0 4.2)

where ¢ = ¢(2) and p = p(z) are periodic functions with period 4. It is obvious that problems (2.2),
(3.2) and (3.3) are special cases of problem (4.1), (4.2).

Resting on Floquet-Lyapunov theory [14], the general solution of Eq. (4.1) can be represented in
the form

a=ARYWZ-2)+ ARy (22 2, S 2 24y (4.3)

where A, and A4, are arbitrary constants, z; = sh(s = 0, 1, ..., N-1), y1(2), y»(z) are a pair of linearly
independent solutions of Eq. (4.1) in the interval z € [0, 4] and ry, r, = ri! are the roots (multipliers)
of the recurrent equation

P2 = 2bk,@)r+1=0;  =b+(b* - 1) (4.4)

Remark 6. If we put k = 0, r = "™ in Eq. (4.4), we obtain the dispersion equation cosf = b(w) of the normal
modes in an unbounded stratified medium which, according to Floquet’s theory, can be represented in the form
u = e'Py(z), where y(z) is an h-periodic function. At the same time, b(®w) < 1 determines the transmission bands
and the condition b(w) > 1 determines the cut-off bands [15]. The case when ¢ = ¢33 corresponds to a longitudinally
polarized waves and the case when ¢ = ¢44 corresponds to transversely polarized waves.

Substituting expression (4.3) into boundary conditions (4.2), we obtain
VIO + 3004y =0, KVY{(€)A + 5V y3(€)A; =0 (4.5)
It follows from the condition for a non-trivial solution of system (4.5) to exist that
¥ 01" -y )y3(e) =0 (4.6)

In the problem under investigation, the case when b(k, ®) < 1 1s of interest. In this case, A, = A,
y; = J1. At the same time, as a result of the substitution r; = e'? " Eq. (4.6) is transformed into the
following equation

sin(NBa+1) =0, tgt=Imw/Rew, w=y/(£)y(0) 4.7

We denote by B,, = (mn - 1)/hN (m = 0, 1, ...) the roots of Eq. (4.7). Returning to Eq. (4.4) and
taking account of the fact that

r+r~' =2cos(hB), cos(hByy,n)=cos(hp,,)
we obtain 2N dispersion equations
Fi(k,®) = b(k,0)~cos(hB;)=0, j=0,1,...,2N -1 (4.8)
In the case when k = 0, ¢ = cy4 (F;(0, ®) = F;(0, »)), relations (4.8) determine the spectrum S; of
critical frequencies of the first kind and, in the case when k = 0, ¢ = ¢33 (F;(0, 0) = F,;(0, w)), they

determine the spectrum S of critical frequencies of the second kind. It also follows from relations (4.8)
that, in the case of arbitrary piecewise-continuous functions ¢(z) and p(z), we have
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2N-1

S.= US,

o) * a=1,2

j=0
where S; is the set of roots of the functions Fy;(0, ). If H = Nh, then t = 0. In this case

cos(Afan-n) = cos(hB,), n=0,1,....N

5. SOME RESULTS OF A NUMERICAL ANALYSIS FOR
A FINELY STRATIFIED PLATE

Consider the case when
c=cD,p=pWwhenz, <z<z+h
c=c?,p=p® when z, + h) <2<z,

Here ¢, p(l), ¢® and p(z) are constants. We shall call a structure which satisfies these conditions a
finely stratified structure [16, 17]. In this case

bk, @)= cosY by cOS Y,y ~ Y5(p+ p~')siny by siny h,

Y =1,k12 _k2, Yy = !“sz —kz, ka =w/v (0.), U(O.) __,_(C(u)/p(u))%
p = 0272/(0171), h2 = h - hl

The expressions for the eigenfunctions and associated functions are not presented here in view of their
length.

The calculations were carried out for a steel — rubber pair:

For steel: pV) = 7.8 x 107 kg/m®; v = 3.17 x 10° mys; v§1) = 5.83 % 10° m/s;

For rubber: p(z) =12x10° kg/m3; v§2) =128 x 10° m/s; v,(2) = 9.13 x 10° m/s.

We will now explain the notation which is used below: Q = wh/v}” is the reduced frequency; Q,,,,,,
Q.. are the values of the critical reduced frequencies belonging to S, and Sy,; 41, and a,,,, are the
corresponding natural modes; A;,, and ;,, are the pseudoelastic constants which appear in Eqs (3.8);
& = hy/h is the dimensionless thickness of the steel layer; &4, and &,,,, are the values of the parameter
€ for which the invariants dy;, = 0, dypq = 0 (see Assertions 3 and 5); Ny, and 13, are the values of

-the parameter & at which dyy, or d,,, respectively become infinite (see Remark 5).

The values of Q,,,,, and Q,,,,, calculated for £ = 0.5when N =8,n =0,1,2, ..., 8 are shown in Table
1. They are identical to the values when N = 16, which correspond ton = 0, 2, 4, ..., 16. The rows
ilfustrate the frequency distribution within the transmission band. Here, the lowest frequency is the lower
limit of the band. The values of the reduced frequencies, calculated using the formulae

n n
an=Kl%,‘» an=K2”';'\',“’ K, =Urm"——£p> » Ky =U1(I)‘—<p)

_ L _1ide
(p)— hgp(z)dzv (Css>‘_ hé%

A

which follow from the theory of averages, are separated out into a single row. They give a certain idea
on the domain of applicability of this theory for determining the characteristic frequencies of elastic
elements made from strongly inhomogeneous media.

The values of the pseudoelastic constants A, and py,, for the critical frequencies from the first row
of Table 1 are presented in Table 2. Special cases were analysed with respect to the parameter & for the
frequencies 1y and €,;; when N = 8 and showed that one value each of £;;; = 0.9232, nyy; = 1.171
exists but two values each of &,;; = 0.06748, 0.3022, n3;; = 0.08868, 0.6704.

As an illustration of the amplitude distribution of the oscillations throughout the thickness, graphs
of the natural modes a,;; (the solid curve), ay, (the dashed curve) and a;;, (the dot-and-dash curve)
as a function of z are shown in Fig. 1.

This research was supported financially by the Russian Foundation for Basic Research (01-01-004540).
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Table 1
n 0 | 2 3 4 5 6 7 8
Qi |0 0.1137 0.2242 | 0.3281 0.4219 | 0.5015 | 0.5625 0.6012 | 0.6144
Qi | 2.660 2.653 2.632 2.600 2.563 2.525 2.492 2470 2.462
Q.3 | 4.809 4.819 4.846 4.889 4941 4.997 5.047 5.083 5.096
Q, 0 0.1142 0.2284 | 0.3426 0.4568 | 0.5709 | 0.6851 0.7993 | 09135
£, |0 0.3818 0.7581 | 1.123 1.466 1.776 2.031 2.204 2.266
Q,,, |6.790 6.714 6.516 6.253 5.968 5.695 5.461 5.298 5.240
Q,,3 | 8.768 8.849 9.059 9.345 9.665 9.991 10.29 10.53 10.63
Q,, 0 0.3826 0.7652 | 1.148 1.531 1.913 2.296 2.678 3.061
Table 2
n 1 2 3 4 5 6 7 8
Qim 0.1137 0.2242 0.3281 0.4219 0.50t5 0.5625 0.6012 0.6144
Apa X 1073 4998 2877 2853 3661 3795 3505 3299 3244
TP 10-3 2499 1439 1427 1830 1898 1753 1649 1622

—an|\
-~ a7
=T a2

-1
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