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A problem on the harmonic oscillations of a transversely inhomogeneous plate, the physicomechanical properties of which are 
described by arbitrary piecewise-continuous functions, is considered using the three-dimensional equations of the theory of 
elasticity. A general representation of the solution is found and, on the basis of this solution by a separation of variables, the 
initial problem, in the case of homogeneous boundary conditions on the faces of the plate, is reduced to two eigenvalue problems 
with a pair of eigenvalue parameters. The angular frequency and wave number perform the role of these parameters. Particular 
attention is paid to the critical frequencies for which multiple eigenvalues exist in the wave-number spectrum. A classification 
of them is given and differential equations are obtained which describe the distribution of the critical modes in the domain occupied 
by the plate. The general theory constructed, together with the Floquet-Lyapunov theory, is applied to plates with a periodic 
transverse inhomogeneity. Calculations are carried out for a finely stratified plate with alternating rigid (steel) and soft (rubber) 
layers. © 2002 Elsevier Science Ltd. All rights reserved. 

The investigation of the propagation of harmonic waves in semi-bounded bodies and the oscillation of 
plates reduces to eigenvalue problems in the pair of parameters (k, to), where k is the wave number 
and to is the angular frequency. In the majority of papers concerned with this problem, as a rule the 
question of the mathematical description of the set of modes corresponding to a multiple wave number 
was left aside. Various terms are used for the value of the frequency in such cases: the critical frequency, 
the stop frequency, the cut-off frequency and the resonance frequency. Using the example of an 
anisotropic, transversely inhomogeneous strip, it was shown in [1, 2] that critical modes can have a power- 
low growth, and this result was extended in [3--6] to arbitrary solid waveguides with a single axis of 
propagation of normal modes. A full classification of the critical frequencies of a homogeneous plate 
has been given in [7, 8] in relation to the investigation of the interaction of the dispersion and dissipative 
decay of normal modes and two-dimensional equations have been obtained for describing the distribution 
of the critical modes. A similar result has been announced for the case of a transversely inhomogeneous 
plate made of elastic [9] and piezo-active materials [10]. The results of an investigation of the problem 
for a finely stratified plate having a periodic structure are described below. 

1. G E N E R A L  R E P R E S E N T A T I O N  OF THE S O L U T I O N  

We will denote the domain occupied by the plate by V = S x [z-, z+], where xl, x2 E S, x 3 = Z E eo 
[z-, z÷]. We consider the equations for the steady oscillations of a one-dimensionally inhomogeneous, 
transversally isotropic medium in the domain V. We have 

0( c 440ul + c ~Oi u3 ) + q 3001u3 + ( q 10~ + c660~ )ul + ( q 2 + c66 )OtO2u2 + %0~ u~ = 0 

0(C440U 2 q" C4402U 3) "P C13002U 3 + (Cl2 "t- C66)0102U I "F (C66012 4" C 1102 )//2 + P0")2U2 ---- 0 

0(C330U 3 + C 1301U I + C 1302U2) + C4400 lu I + C44002U 2 + C44AU 3 + p~2U 3 = 0 

0 a = O / O x a ,  0 = 0 / 0 Z ,  A=0~+02  (tx=l,2), 2C66=C11--C12 

(1.1) 

Here uj are the amplitudes of the displacements (j = 1, 2, 3), cij = cij(z) and P = p(z)  are the moduli 
of elasticity and the density, respectively, regarding which it is assumed that they are piecewise-continuous 
functions of z, and to is the angular frequency of the harmonic oscillations. In the case of an isotropic 
material 
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Cll = c33 = 2L+ 2IX, C44=C66=IX, Cl2 = cl3 = ~. 

where )~ and Ix are the Lam6 elastic parameters. 
We will represent the plane field u = {ul, u2} in the form of potential and vortex parts, putting 

Ul = 211/I + 22//2, U2 = 02th - 0to2 (1.2) 

Substituting Eqs (1.2) into system (1.1) and transforming the first two equations, we obtain 

01L1 (Vl ,u3) + 02L(v2)  = O, 0 2 L l ( O l , u 3 ) - O i L ( v 2 ) = O  

(ul, u 3 ) = 0(c440uj + c44u 3 ) + c 130u 3 + q lAth + p(02u I (1.3) 

L(F2 ) = 0(c440v 2 ) + c66Av2 + 0(0202 

and the third equation of (1.1) gives 

/-,2(OI, U 3) m 0(C33/~tU3 + CI3AU I ) + C44 (0AU I + ~LU 3) + p(02U3 = 0 

Since relations (1.3) are identical to the Cauchy-Riemann identities for adjoint harmonic functions, 
the initial system of equations (1.1) is equivalent to the following 

L(v2 )=g2 ,  ~ ( v i , u 3 ) = g l ,  L2(ul,u3) = 0 (1.4) 

where gl and g2 are adjoint harmonic functions of the variables Xx and x2 which, generally speaking, also 
depend on z. The following can be taken as a particular solution of the inhomogeneous system of 
equations (1.4) 

u 2 = v  °, v , = v  °, u ° = 0  (1.5) 

where v~ and v ° are solutions of the equations 

0(c440o o)+ p(0bo = 

in the case of arbitrary boundary conditions on the faces z = z-*. Using this arbitrariness, it is always 
0 invertible and to represent their possible, for any value of co, to make problems of constructing va 

solutions in the form 

Z + 
o SK(z  - y ) g a ( x l , x 2 , y ) d y  (1.6) Oct ~ 

7.- 

The equality 

u ° =0,v ° + 0 ~  ° --0, u ° - - 3 2 u ° - 3 ~  ° =0  (1.7) 

follows from expressions (1.2), (1.3) and (1.6), and, consequently, the displacement fields corresponding 
to the particular solution are identically equal to zero. One can therefore put gl = g2 = 0. Hence, the 
initial system of equations (1.1) is separated into an equation in the function v 2 

L(u2) = 0 (1.8) 

and a system of equations in the pair of functions vl, u3 

La(vl,u3,) = 0, ot = 1,2 (1.9) 

We shall assume that, when z = z-,  the following boundary conditions are specified 

%3 It=~ = (c440ut + c~Olu3)It=~ = q~(xi, x2) 

(~33 [z=z + = (C330U3 + CI301t/1 + CI302U2)It=z± = q+(Xl,X2) (1.10) 

Here, o 0 are the components of the stress tensor. 
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We shall show that the boundary conditions presented above can also be separated in the case of an 
inhomogeneous layer to obtain disconnected boundary-value problems in the function v2 and the 
functions Vl and u3. 

In fact, we will represent the functions ql and q2 in the form 

q? = 3, X~ + 3='1:~, q~ = 3 2"c~: - 3,'1:3 (1.11) 

Substituting expressions (1.2) and (1.11) into conditions (1.10), we obtain after some reduction 

M(v 2 ) [z=z± -= ¢44 a u  2 [Z=Z ± = T,~ "b f2 "1" 

M I (v I, u3 ) [z=z± -- [c44 (3v  I + u3 )] [z=z± = X / +  fl + 

M2 (o i, u3)Iz=z± - (c333u 3 + cl3Au I ) [z=z± = q± 

(1.12) 

Here f l (xl, x2) and f~(xl ,  x2) are adjoint harmonic functions. 
It can be shown that, for all values of m for which the problem 

a[c44a,(z)] + pc02~(z) = 0, b~(+h):  0 (1.13) 

has only a trivial solution, it is possible to put f~(xl, x2) = 0. Values of co for which problem (1.13) has 
a non-trivial solution belong to the category of critical values, and the corresponding solutions will be 
constructed below. 

2. H O M O G E N E O U S  S O L U T I O N S  

We equate the right-hand sides in boundary conditions (1.12) to zero and we shall seek solutions of 
the corresponding homogeneous boundary-value problems in the form 

v2 =a(z)m2(xl,x2),  vl =at(z)ml(xl ,x2),  u3 =ika2(z)ml(xl,x2) (2.1) 

Am~ + k 2 ma = 0 

Substituting .expressions (2.1) into equations (1.8) and (1.9) and the boundary conditions (1.12) and 
separating the variables, we obtain the eigenvalue problems 

(c44a')' + (pro 2 -k2c44)a=O, a'(z+) = 0 (2.2) 

(Ca') '  + ik[(Ba)' + B * a ' ] -  k2Aa + 9(02a = 0 (Ca' + ikBa) Iz=z ± = 0 (2.3) 

Here a = {al, a 2} is a vector function, a prime denotes differentiation with respect toz  and C = II Cij II, 
B -- I IBij II and A = I IZ u II are matrix functions (B* is the transpose of the matrix B) with the following 
non-zero elements: 

C22 =c33,  BI2 =c44, B2~ =q3,  A~j =Cll,  A22 =c44 

We will denote the eigenvalues of problems (2.2) and (2.3) with respect to the parameter k by A1 
and A2. 

Assertion 1. For any real value of the frequency m, the spectrum A = AI3 r u A~k ([3 = 1, 2), where the 
subset A~r contains a finite number 2R of eigenvalues which are symmetrically arranged on the real 
axis, A~k is an unbounded, symmetric set consisting of the real eigenvalues and A2k is a symmetric, 
unbounded set of complex eigenvalues (we also assign pure imaginary eigenvalues to the category of 
complex eigenvalues). 

If ko ~ A1 and kp ~ A2 are simple eigenvalues, then homogeneous elementary solutions of the first 
kind (the subscript v) and the second kind (the subscript p) that correspond to them are given by the 
expressions 
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Utu = a~ (z)a2m2u, u2u = - a ~  ( z ) a v n ~  , u~  = 0 (2.4) 

Atn2u + kv2 m ~  = O, 

ulp = a~p(z)atm~p, 

2 Amjp + kpmle = O, 

m~ = m~ (xj,x2) 

U2p = atp(z)a2mlp,  

mlp = mlp(x l , x2  ) 

u w = ikpa2p(Z)mt p (2.5) 

Theorem.  If the spectra Aa and A2 consist solely of simple eigenvalues, then any homogeneous solution 
(a so lu t ion  which satisfies homogeneous boundary conditions (1.10)) can be represented by a finite or 
infinite sum of the elementary solutions (2.4) and (2.5). Here, ifS is an unbounded domain, the solutions 
of  the Helmholtz equations for real values of k~ and kp can be chosen from the condition of the energy 
radiation principle [2, 7, 8] and, in the case of complex values, from the attenuation condition. 

Remark 1. The  proof of an analogous theorem on the completeness of systems of homogeneous elementary 
solutions, presented earlier in [11] for a static problem, can be transferred to the case under consideration with 
only slight changes. 

3. C R I T I C A L  F R E Q U E N C I E S  AND M O D E S  

We shall say that a frequency toc is critical if, among the eigenvalues k~ ~ Ay(oJ), there is a multiple 
eigenvalue kc. We shall call the pair (k~, tgc) critical and we shall call the elementary solutions 
corresponding to the critical pair the critical modes. 

Consider the case when k~ = 0. Substitution ofk  = 0 into problem (2.2) leads to the following problem 
for determining the set of critical frequencies 

(c44a~)" + ptoZa0 = 0, a 0 (z ±) = 0 (3.1) 

Substitution o f k  = 0 into (2.3) leads to two problems for 

(c44a~l)" + pto2a01 = 0, 

( c 3 3 a ~ 2 ) '  + p (02 a02  = 0, 

determining the set of critical frequencies 

a~l (z ±) = 0 (3.2) 

ate2 (z ±) = 0 (3.3) 

We will first consider problems (3.1) and (3.2) which, although they are identical, are a consequence 
of the two different problems (2.2) and (2.3). We call the sets of  values co = ~r (r = 1, 2 . . . .  ), for which 
these problems have non-trivial solutions, critical frequencies of the first kind. The corresponding 
eigenfunctions ao and aol are denoted by tO0" In this case, an eigenvector of problem (2.3) has the form 
ao~ = {q~Or, 0}. Since k = 0 is a multiple eigenvalue, the root subspaces of the initial problem (2.3) are 
not exhausted by the eigenvector. As the investigations in [6, 7], carried out for a homogeneous plate, 
have shown, different versions of problem (2.3) are possible depending on the parameters. We will now 
describe them. 

For this purpose, we consider problem (2.3) and construct the equations for determining the associated 
vectors. We have 

Z(O,£Or)ara r = Fmr, m = 1,2 . . . .  

Fl~-----0,Z(0,00~)a0. F.r =~kZ(0,C%)am_~r--½a~Z(0, W~)a~_zr 

Z(k,  w)a -- { (Ca) + ik[(Ba)' + B 'a  '] - k2Aa + pto2a = 0, (Ca + ikBa) [z=z* } 

(3.4) 

Here Ok is a derivative with respect to the eigenvalue parameter k. 
Since each of  problems (3.4) is an "eigenvalue problem", solutions only exist when the conditions 

Z + 

d,n, = f F, nrj~orjdZ = 0 
Z 

are satisfied. 
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When m = 1, it follows from Eq. (3.4) that air = {(POr,/alr2}, where air 2 are determined by the solutions 
of the problem 

(c44afr2)" +p(o2alr2 +(C13(POr)" +C44(P'Or =0 ,  (c44a~r 2 +Cl3¢POr)lz=z±= 0 (3.5) 

At the same time 

Z ± 

dlr = ~ [(cl3af~2 )~Or -- (c44a! 2)~or + q!tPo/~or ]dz (3.6) 
Z 

If d~r ~ 0, then the Jordan array is exhausted by the two vectors a0r and air while, if dlr = 0, at least 
a further pair of associated vectors a2r and a3r exists. 

We now consider the problem of constructing the elementary vectors (modes) corresponding to the 
critical pairs (0, %). In this case, the value kc = 0 is a quadruple value with respect to the set of elementary 
solutions of the first and second kind if dl~ ¢ 0 and has a higher multiplicity (always even) if dlr = 0. 
In order to obtain the system of differential equations describing the distribution of the amplitudes of 
the critical modes with respect to the variables xl, x2, the technique employed earlier in [12, 13] can be 
used. 

Assertion 2. Suppose dlr -%" O. Then, the set of elementary solutions corresponding to the critical pair 
(0, O)r) is determined by the relations 

UcL =(POrbct(xl,x2)+a2rl~ctO, u 3 = alr2e, O=Oib ] +~2b2 (3.7) 

( ~ , r ' b ~ r ) O l O ' l ' ~ . [ r ~ b l  - - 0 ,  ( ~ , r ' l ' ~ r ) O 2 O q ' ~ r Z ~ b  2 = 0  
+ 

z 

kt r = ~ c66(Po/~ordz, ~'r = d l , -  2gr 
Z 

(3.8) 

Here, a = a2r 1 is the solution of the problem 

(c44a')" + pto2~a + (c4401r 2 )" + claa(r  2 + (Cl2 - c66~,r [ ~tr)(Po r = 0 

(c44a" + c44alr2) [z=z ± = 0 

Remark 2. Equations (3.8) are identical in form to the equations of the plane theory of elasticity. 

Assertion 3. If d l , =  0 (the first special case), then at least a further two associated vectors a2r = 
{-a2ra, 0}, a,3 = {0, -ia3r2} exist, where a3r2 is the solution of the problem 

p • 2 i p 
( C4403k 2 ) + p(Ora3k 2 + (c l3a2r  I ) + c44a2r I + c44alr 2 = 0 

( c 44a~r 2 + Cl3a2r I )Iz=z ± = 0 (3.9) 

The critical modes in this case are determined by the relations 

Uct = q)orbet + a2rl~ot0, u 3 = air20 + a3r2C 

Here C is an arbitrary constant, and the functions b I and b 2 satisfy the equations 

A(0~bl +01b2b2) = 0, A(Oj02bl +02b2) = 0 (3.10) 

Remark 3. Relations (3.7) and (3.8) admit of particular solutions of the form 

u~ = (P0rC=, u3 = 0 

where Ca are constants. These solutions describe one of the types of resonances of a layer which it is natural to 
call a longitudinal resonance. 
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We will now present some fundamental results for the case when problem (3.5) has a non-trivial 
solution. We shall call the corresponding values of co = O)q (q  = 0, 1 . . . .  ) critical frequencies of the second 
kind. An eigenvector a0q = {0, a0q 2} and an associated vector alq = {/alql, 0} correspond to each critical 
frequency of the second kind if 

d2q ~ 0 (3.11) 

Z + 
• • 2 

d2q = J [alql(c13aoq2)-alql(c44ao,2)-c44aoo2]dz 
Z 

w h e r e  alq I is the solution of the problem 

• v 2 • 
(c44alq ! ) + p ~ q a l q  I + c44aoq + cl3aoq 2 = 0 

• + _ 
(c44anqn + c44aoq2 ) Iz=z- 0 

Assertion 4. If condition (3.11) is satisfied, the set of critical modes corresponding to the critical pair 
(0, O)q) is described by the relations 

u a = aoqlOam, u 3 = aoq2m, Am = 0 (3.12) 

Remark 4. Relations (3.12) admit of a solution of the form 

Utx = O, U 3 = aoq2C 

where C is an arbitrary constant. Th~ solution is naturally interpreted as the transverse resonances of an unbounded 
layer. 

Assertion 5. If d2q = 0 (the second special case), then at least a further two associated vectors a2q = 
{0, --a2q2}, a3q = {--/a3ql, 0} exist, the components of which are determined by the solutions of the 
problems 

, , 2 , , 
(c33a2q 2 ) + pt.Oqa2q 2 + (cl3alq ! ) + c44alq I + c44aoq 2 = 0 

(c33a~q 2 + cl3alq I ) {z=z± = 0 

• • 2 • t 

( c 44 a3ql ) + ptl) qa3q I + ( c 44a2q2 ) + cl 3a2q 2 + Cl l a3q I = 0  

(c44a~q I + c44a2q2) Iz=z ± = 0 

and the critical modes are determined by the relations 

ua = alqlOam + a3ql~aAm, u 3 = aoq2m + a2q2Am, A2m = 0 

Assertion 6. If there are critical frequencies of the first and second kind which are identical in magnitude 
co c = 03r = 03q in the spectra A1 and A2 (the third special case), then a longitudinal and a transverse 
critical mode of the form 

u a=aOrlbcL, u 3 = 0 ,  ~ ] b  1 + ~ 2 b 2 = 0 ,  ~ 2 b l - ~ l b 2  = 0  

Uet = O, IA 3 = aOq 2 

correspond to the pair of eigenvalues (0, (0c). 

Remark 5. The fact that the Jordan arrays dlr , d2q become infinite is one of the signs of the existence of such a 
pair of solutions. 

The cases of critical frequencies and modes which have been described do not exhaust all the 
possibilities. In particular, it can be shown that, if dlr < 0 (d2q < 0), the dispersion curve co = o)(k), 
emerging from the point (0, (Or) ((0, 0~q)) always has a local minimum with a value kc ~ 0 which is multiple. 
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We put  

4. T H E  S P E C T R A  O F  T H E  C R I T I C A L  F R E Q U E N C I E S  
O F  T R A N S V E R S E L Y  I N H O M O G E N E O U S  P L A T E S  W I T H  

A P E R I O D I C  S T R U C T U R E  

z - = 0 ,  z ÷ = H = N h + E ,  0 ~ < E < h ,  z s = h s ,  s = 0 ,  1 .... N 

where  N is a na tura l  n u m b e r  and consider  the p r o b l e m  

(ca ' )  + (po~ 2 - ck 2)a : 0 (4.1) 

a'(O) = a ' (H)  = 0 (4.2) 

where  c = c(z)  and 13 = 13(z) are per iodic  funct ions with per iod  h. It  is obvious that  p rob l ems  (2.2), 
(3.2) and (3.3) are special cases of  p r o b l e m  (4.1), (4.2). 

Rest ing on F l o q u e t - L y a p u n o v  theory  [14], the genera l  solut ion of  Eq. (4.1) can be r ep resen ted  in 
the fo rm 

a = A 1 ~Sy t (z - Zs) + A2r~y2 (z - zs ), zs <~ z <~ zs+l (4.3) 

where  A]  and A2 are arbi t rary  constants ,  zs = sh(s  = 0, 1 . . . . .  N - l ) ,  yl(z), y2(z) are a pa i r  o f  l inearly 
independen t  solutions of  Eq.  (4.1) in the interval z e [0, h] and rl, r2 = ri -1 are the roots  (mult ipl iers)  
o f  the recur ren t  equa t ion  

r 2 - 2 b ( k , o ~ ) r + l  = 0 ;  r I = b + ( b  2 - 1 )  ~ (4.4) 

Remark 6. If we put k = 0, r = e ifSh in Eq. (4.4), we obtain the dispersion equation cosl3 = b(o~) of the normal 
modes in an unbounded stratified medium which, according to Floquet's theory, can be represented in the form 
u = eif~Zy(z), wherey(z) is an h-periodic function. At the same time, b(o)) < 1 determines the transmission bands 
and the condition b(~o) > 1 determines the cut-off bands [15]. The case when c = c33 corresponds to a longitudinally 
polarized waves and the case when c = c44 corresponds to transversely polarized waves. 

Substi tut ing express ion (4.3) into bounda ry  condi t ions (4.2), we obta in  

Yl (O)AI + Y2(O)A2 = O, ~Ny((~.)A I + ~-~ty~(~.)A 2 = 0 (4.5) 

It  follows f rom the condi t ion for  a non-trivial  solut ion of  system (4.5) to exist that  

y~ (0)y~(E)fi t~ - y~(O)y~ (e.)rl -~  = 0 (4.6) 

In  the p r o b l e m  under  investigation,  the case when  b(k ,  0~) < 1 is of  interest.  In  this case, A2 = -41, 
Y2 = Yl. At  the same  t ime,  as a result  o f  the subst i tut ion r] = e i[]h, Eq. (4.6) is t r ans fo rmed  into the 
following equa t ion  

sin(N~h + x) = 0, tgx = Im w l R e w ,  w = y~(e)y((0) (4.7) 

We denote  by 13 m = (mrt  - x ) / h N  (m = 0, 1, . . .)  the roots  o f  Eq. (4.7). Re turn ing  to Eq. (4.4) and 
taking account  of  the fact that  

r +  r -I = 2cos(h~),  cos(h~2/V+m ) = cos(him)  

we obtain  2N dispers ion equat ions  

Fj(k, c0) = b(k ,0~)-cos(h l~ j )  = 0, j = 0,1 . . . . .  2 N -  1 (4.8) 

In  the case when  k = 0, c = C44 (Fj(0,  (D) --- F]j(0, o~)), re la t ions (4.8) de t e rmine  the spec t rum $1 of  
critical f requencies  of  the first kind and,  in the case when  k = 0, c = C33 ( F j ( 0 ,  0)) = F 2 j ( 0  , 0))) ,  they 
de te rmine  the spec t rum $2 of  critical f requencies  of  the second kind. It  also follows f rom relat ions (4.8) 
that,  in the case of  arbi t rary  p iecewise-cont inuous  funct ions c(z)  and P(Z), we have 
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2N-1 
Sex= USaj, or=l,2 

)=o 

where Say is the set of roots of the functions Fay(0, co). I f H  = Nh,  then "c = 0. In this case 

Cos(h~N-n) = cos(h~n), n = 0, I . . . . .  N 

5. S O M E  R E S U L T S  OF A N U M E R I C A L  A N A LY S IS  F O R  
A F I N E L Y  S T R A T I F I E D  P L A T E  

Consider the case when 

c = c o), p = pO) when zs ~ z <~ z~ + h~ 

c = c (2), p - p(2) when z, + hi ~< z ~ z~.l 

Here  c 0), 13(1), c (2) and p(2) are constants. We shall call a structure which satisfies these conditions a 
finely stratified structure [16, 17]. In this case 

b(k, tO)= cos g lhl cos y2t12 - ~ (p + p-I ) sin g lhl sin Y2h2 

rl = ~ l  2 - k2 ,  V2 = ~ 2  - k2 ,  ka = Oalv (~), V (cO = (Ct~) / p(et))~ 
p = c£t21(c(t~), h= = h - hi 

The expressions for the eigenflmctions and associated functions are not presented here in view of their 
length. 

The calculations were carried out for a steel - rubber pair: 
For steel: p 0) -- 7.8 x 10 -6 kg/m3; v~ 1) = 3.17 x 105 m/s; u} 1) = 5.83 x 105 m/s; 
For rubber: 9 (2) = 1.2 x 106 kg/m3; v} 2) = 1.28 x 105 m/s; v} 2) = 9.13 x 105 m/s. 
We will now explain the notation which is used below: ~ = mh/vp  ) is the reduced frequency; ~lnm, 

~2nm are the values of the critical reduced frequencies belonging to Sin and S~; aln m and a2nm are the 
corresponding natural modes; )~im and ~i,~ are the pseudoelastic constants which appear in Eqs (3.8); 

= hl/h is the dimensionless thickness of the steel layer; ~lkr and ~2pq are the values of the parameter  
for which the invariants dlkr = 0, d2pq = 0 (see Assertions 3 and 5); qlkr and q2pq are the values of 

the parameter  { at which dlk~ or d2pq respectively become infinite (see Remark 5). 
The values of ~in,n and ~2~m, calculated for ~ = 0.5 w h e n N  = 8, n = 0, 1, 2, ..., 8 are shown in Table 

1. They are identical to the values when N = 16, which correspond to n = 0, 2, 4 . . . .  ,16.  The rows 
illustrate the frequency distribution within the transmission band. Here, the lowest frequency is the lower 
limit of  the band. The values of the reduced frequencies, calculated using the formulae 

n= .=  (p} (p) n,.=K,- 7 ,  n .=K2  K, =,, )" ) 

] h  (p)=g!p(z)az."" l ,az 

which follow from the theory of averages, are separated out into a single row. They give a certain idea 
on the domain of applicability of this theory for determining the characteristic frequencies of elastic 
elements made from strongly inhomogeneous media. 

The values of the pseudoelastic constants )~ln and ~tan for the critical frequencies from the first row 
of Table i are presented in Table 2. Special cases were analysed with respect to the parameter  { for the 
f requenc ies  h'~ll 1 and ~211 when N = 8 and showed that one value each of ~111 = 0.9232, 1~111 = 1.171 
exists but two values each of ~2n = 0.06748, 0.3022, ~12u = 0.08868, 0.6704. 

As an illustration of the amplitude distribution of the oscillations throughout the thickness, graphs 
of the natural modes a211 (the solid curve), a221 (the dashed curve) and a212 (the dot-and-dash curve) 
as a function o f z  are shown in Fig. 1. 
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n 0 I 2 

~'~1 nl 
f2l n2 
i l l  n3 

~')ln 
~'~2nl 
f~2n2 
~-22n 3 

~2n 

Table 1 

0 
2.660 
4.809 

0 
0 
6.790 
8.768 

0 

0.1137 
2.653 
4.819 

0.1142 
0.3818 
6.714 
8.849 

0.3826 

0.2242 
2.632 
4.846 

0.2284 
0.7581 
6.516 
9.059 

0.7652 

3 4 5 6 7 8 

0.3281 0.4219 0.5015 0.5625 
2.600 2.563 2.525 2.492 
4.889 4.941 4.997 5.047 

0.3426 0.4568 0.5709 0.6851 
1.123 !.466 1.776 2.031 
6.253 5.968 5.695 5.461 
9.345 9.665 9.991 10.29 

1.148 1.531 1.913 2.296 

0.6012 0.6144 
2.470 2.462 
5.083 5.096 

0.7993 0.9135 
2.204 2.266 
5,298 5.240 
10.53 10.63 

2,678 3.061 

n I 

i l l ,1  0.1137 
~ , l  n x ! 0-3 4998 
IJ-I n x 10 -3 2499 

Table 2 

2 3 4 

0.2242 0.3281 0.4219 
2877 2853 3661 
1439 1427 1830 

5 6 7 8 

0.5015 0.5625 0.6012 0.6144 
3795 3505 3299 3244 
1898 1753 1649 1622 
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